Prediction of heart rate changes from speech features during interaction with a misbehaving dialog system
نویسندگان
چکیده
Most research on detecting a speaker’s cognitive state when interacting with a dialog system has been based on selfreports, or on hand-coded subjective judgments based on audio or audio-visual observations. This study examines two questions: (1) how do undesirable system responses affect people physiologically, and (2) to what extent can we predict physiological changes from the speech signal alone? To address these questions, we use a new corpus of simultaneous speech and high-quality physiological recordings in the product returns domain (the SRI BioFrustration Corpus). “Triggers” were used to frustrate users at specific times during the interaction to produce emotional responses at similar times during the experiment across participants. For each of eight return tasks per participant, we compared speaker-normalized pre-trigger (cooperative system behavior) regions to posttrigger (uncooperative system behavior) regions. Results using random forest classifiers show that changes in spectral and temporal features of speech can predict heart rate changes with an accuracy of ~70%. Implications for future research and applications are discussed.
منابع مشابه
A Database for Automatic Persian Speech Emotion Recognition: Collection, Processing and Evaluation
Abstract Recent developments in robotics automation have motivated researchers to improve the efficiency of interactive systems by making a natural man-machine interaction. Since speech is the most popular method of communication, recognizing human emotions from speech signal becomes a challenging research topic known as Speech Emotion Recognition (SER). In this study, we propose a Persian em...
متن کاملClassification of emotional speech using spectral pattern features
Speech Emotion Recognition (SER) is a new and challenging research area with a wide range of applications in man-machine interactions. The aim of a SER system is to recognize human emotion by analyzing the acoustics of speech sound. In this study, we propose Spectral Pattern features (SPs) and Harmonic Energy features (HEs) for emotion recognition. These features extracted from the spectrogram ...
متن کاملA satisfaction-based model for affect recognition from conversational features in spoken dialog systems
Detecting user affect automatically during real-time conversation is the main challenge towards our greater aim of infusing social intelligence into a natural-language mixed-initiative High-Fidelity (Hi-Fi) audio control spoken dialog agent. In recent years, studies on affect detection from voice have moved on to using realistic, non-acted data, which is subtler. However, it is more challenging...
متن کاملLinguistic and acoustic features depending on different situations - the experiments considering speech recognition rate
This paper presents the characteristic differences of linguistic and acoustic features observed in different spoken dialogue situations and with different dialogue partners: human-human vs. human-machine interactions. We compare the linguistic and acoustic features of the user’s speech to a spoken dialogue system and to a human operator in several goal setting and destination database searching...
متن کاملGrounding Emotions in Human-Machine Conversational Systems
In this paper we investigate the role of user emotions in human-machine goal-oriented conversations. There has been a growing interest in predicting emotions from acted and non-acted spontaneous speech. Much of the research work has gone in determining what are the correct labels and improving emotion prediction accuracy. In this paper we evaluate the value of user emotional state towards a com...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015